

HIGHLIGHTS

This section of the manual contains the following major topics:

29.1	Introduction	
29.2	Instruction Formats	
29.3	Special Function Registers as Source/Destination	
29.4	Q Cycle Activity	
	Instruction Descriptions	
29.6	Design Tips	
29.7	Related Application Notes	
29.8	Revision History	

29.1 Introduction

Each midrange instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The midrange Instruction Set Summary in Table 29-1 lists the instructions recognized by the MPASM assembler. The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Table 29-2 gives the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For literal and control operations, 'k' represents an eight or eleven bit constant or literal value.

All instructions are executed in one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In these cases, the execution takes two instruction cycles with the second cycle executed as an NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

	14 Dit Instruction Word									
Mnemonic, Operands		Description	Cycles	14-Bit Instruction Word				Status	Notes	
		•		MSb			LSb	Affected		
BYTE-ORIEN	ITED FI	LE REGISTER OPERATIONS								
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2	
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2	
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2	
CLRW	-	Clear W	1	00	0001	0xxx	XXXX	Z		
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2	
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2	
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3	
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2	
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3	
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2	
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2	
MOVWF	f	Move W to f	1	00	0000	lfff	ffff			
NOP	-	No Operation	1	00	0000	0xx0	0000			
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2	
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2	
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2	
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2	
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	z	1,2	
BIT-ORIENTE	D FILE	REGISTER OPERATIONS								
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2	
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2	
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3	
LITERAL AN	D CON	TROL OPERATIONS								
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z		
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z		
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk			
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk	,		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	z		
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001			
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000			
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD		
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z		
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk			
		Exclusive of medified as a function							1	

Table 29-1: Midran	ge Instruction Set
--------------------	--------------------

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP. 29

29.2 Instruction Formats

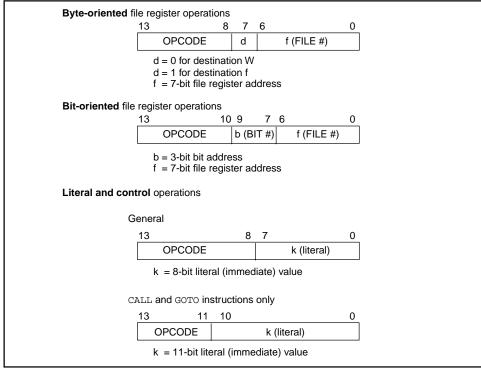
Figure 29-1 shows the three general formats that the instructions can have. As can be seen from the general format of the instructions, the opcode portion of the instruction word varies from 3-bits to 6-bits of information. This is what allows the midrange instruction set to have 35 instructions.

Note 1: Any unused opcode is Reserved. Use of any reserved opcode may cause unexpected operation.

Note 2: To maintain upward compatibility with future midrange products, <u>do not use</u> the OPTION and TRIS instructions.

All instruction examples use the following format to represent a hexadecimal number:

0xhh


where h signifies a hexadecimal digit.

To represent a binary number:

00000100b

where b is a binary string identifier.

Figure 29-1: General Format for Instructions

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register (0 to 7)
k	Literal field, constant data or label (may be either an 8-bit or an 11-bit value)
х	Don't care (0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f.
dest	Destination either the W register or the specified register file location
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer
TO	Time-out bit
PD	Power-down bit
[]	Optional
()	Contents
\rightarrow	Assigned to
< >	Register bit field
E	In the set of
italics	User defined term (font is courier)

29.3 Special Function Registers as Source/Destination

The Section 29. Instruction Set's orthogonal instruction set allows read and write of all file registers, including special function registers. Some special situations the user should be aware of are explained in the following subsections:

29.3.1 STATUS Register as Destination

If an instruction writes to the STATUS register, the Z, C, DC and OV bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF STATUS will clear register STATUS, and then set the Z bit leaving 0000 0100b in the register.

29.3.2 PCL as Source or Destination

Read, write or read-modify-write on PCL may have the following results:

Read PC:	$PCL \to dest;$	PCLATH does not change;
Write PCL:	PCLATH \rightarrow P 8-bit destination	CH; on value $ ightarrow$ PCL
Read-Modify-Write:	$\begin{array}{l} PCL \rightarrow ALU \text{ op} \\ PCLATH \rightarrow PC \\ 8-bit result \rightarrow \end{array}$	CH;

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, W register or register file f.

29.3.3 Bit Manipulation

All bit manipulation instructions will first read the entire register, operate on the selected bit and then write the result back (read-modify-write (R-M-W)) the specified register. The user should keep this in mind when operating on some special function registers, such as ports.

Note: Status bits that are manipulated by the device (including the interrupt flag bits) are set or cleared in the Q1 cycle. So there is no issue with executing R-M-W instructions on registers which contain these bits.

29.4 Q Cycle Activity

Each instruction cycle (Tcy) is comprised of four Q cycles (Q1-Q4). The Q cycle is the same as the device oscillator cycle (Tosc). The Q cycles provide the timing/designation for the Decode, Read, Process Data, Write etc., of each instruction cycle. The following diagram shows the relationship of the Q cycles to the instruction cycle.

The four Q cycles that make up an instruction cycle (Tcy) can be generalized as:

- Q1: Instruction Decode Cycle or forced No Operation
- Q2: Instruction Read Cycle or No Operation
- Q3: Process the Data
- Q4: Instruction Write Cycle or No Operation

Each instruction will show the detailed Q cycle operation for the instruction.

Figure 29-2: Q Cycle Activity

29.5 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) \textbf{+} k \to W$
Status Affected:	C, DC, Z
Encoding:	11 111x kkkk kkkk
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1	Q2 Q3 Q4
Decode	Read Process Write to W literal 'k' data register
Example1	ADDLW 0x15
Example i	Before Instruction
	W = 0x10
	After Instruction
	W = 0x25
Example 2	ADDLW MYREG
	Before Instruction
	$W = 0 \times 10$
	Address of MYREG [†] = 0x37 † MYREG is a symbol for a data memory location
	After Instruction
	W = 0x47
Example 3	ADDLW HIGH (LU_TABLE)
	Before Instruction
	$W = 0 \times 10$
	Address of LU_TABLE $\dagger = 0x9375$
	† LU_TABLE is a label for an address in program memory After Instruction
	W = 0xA3
Example 4	ADDLW MYREG
	Before Instruction W = 0x10
	W = 0x10 Address of PCL [†] = 0x02
	$\dagger {\tt PCL}$ is the symbol for the Program Counter low byte location
	After Instruction W = 0x12
	W = 0x12

-	
Syntax:	[<i>label</i>]ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow destination
Status Affected:	C, DC, Z
Encoding:	00 0111 dfff ffff
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in th W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1	Q2 Q3 Q4
Decode	Read Process Write to
	register 'f' data destination
Example 1	ADDWF FSR, 0
	Before Instruction
	W = 0x17
	FSR = 0xC2 After Instruction
	W = 0xD9
	FSR = 0xC2
Example 2	ADDWF INDF, 1
	Before Instruction
	W = 0x17 FSR = 0xC2
	Contents of Address (FSR) = 0x20
	After Instruction
	W = 0x17 FSR = 0xC2
	Contents of Address (FSR) = 0x37
Example 3	ADDWF PCL
Case 1:	Before Instruction
	W = 0x10 PCL = 0x37
	C = X
	After Instruction
	PCL = 0x47 $C = 0$
Case 2:	Before Instruction
Case 2.	Before instruction $W = 0x10$
	PCL = 0xF7
	PCH = 0x08
	C = x After Instruction
	PCL = 0x07
	PCH = 0x08
	c = 1

Instruction Set

ANDLW	And Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W).AND. (k) \rightarrow W
Status Affected:	Z
Encoding:	11 1001 kkkk kkkk
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1	Q2 Q3 Q4
Decode	Read literal Process Write to W 'k' data register
	W = 0xA3 ; 1010 0011 (0xA3) After Instruction ; W = 0x03 ; 0000 0011 (0x03)
Example 2	ANDLW MYREG
	Before Instruction W = 0xA3 Address of MYREG [†] = 0x37 [†] MYREG is a symbol for a data memory location After Instruction W = 0x23
Example 3	ANDLW HIGH (LU_TABLE) Before Instruction W = 0xA3 Address of LU_TABLE [†] = 0x9375 [†] LU_TABLE is a label for an address in program memory After Instruction W = 0x83

A	NDWF	AND W with f
Synt	ax:	[<i>label</i>] ANDWF f,d
Ope	rands:	$0 \le f \le 127$ $d \in [0,1]$
Ope	ration:	(W).AND. (f) \rightarrow destination
Statu	us Affected:	Ζ
Enco	oding:	00 0101 dfff ffff
Desc	cription:	AND the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Word	ds:	1
Cycl	es:	1
QC	cle Activity:	
	Q1	Q2 Q3 Q4
	Decode	Read Process Write to register 'f' data destination
		W = 0x17 ; 1100 0010 (0xC2)
Exar	mple 2	ANDWF FSR, 0 Before Instruction ; 0001 0111 (0x17) W = 0x17 ; 1100 0010 (0xC2) FSR = 0xC2 ; After Instruction ; 0000 0010 (0x02) W = 0x02 FSR = 0xC2
Exar	mple 3	ANDWF INDF, 1 Before Instruction W = 0x17 FSR = 0xC2 Contents of Address (FSR) = 0x5A After Instruction W = 0x17 FSR = 0xC2 Contents of Address (FSR) = 0x15

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$0 \le f \le 127$ $0 \le b \le 7$
Operation:	$0 \rightarrow f < b >$
Status Affected:	None
Encoding:	01 00bb bfff ffff
Description:	Bit 'b' in register 'f' is cleared.
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1	Q2 Q3 Q4
Decode	ReadProcessWriteregister 'f'dataregister 'f'
Example 1	BCF FLAG_REG, 7
	Before Instruction FLAG_REG = 0xC7 ; 1100 0111
	After Instruction
	FLAG_REG = 0x47 ; 0100 0111
Example 2	BCF INDF, 3
	Before Instruction W = 0x17 FSR = 0xC2 Contents of Address (FSR) = 0x2F After Instruction W = 0x17 FSR = 0xC2

BS	SF	E	Bit Set f						
Synta	ax:	[<i>label</i>] B	SF f,b						
Oper	ands:	$0 \le f \le 127$ $0 \le b \le 7$	7						
Oper	ation:	$1 \rightarrow \text{f}$							
Statu	s Affected:	None							
Enco	ding:	01	01bb bf	ff	ffff				
Desc	ription:	Bit 'b' in re	gister 'f' is s	et.		1			
Word	ls:	1							
Cycle	es:	1							
Q Cy	cle Activity:								
_	Q1	Q2	Q3	Q4		_			
	Decode	Read register 'f'	Process data		Write gister 'f'				
Exan	nple 1	BSF	FLAG_REG,	7					
		Before Ins F	truction LAG_REG =0	0x0A		; 0 000	1010		
		After Instr	uction						
		F	LAG_REG =0	0x8A		; 1000	0 1010		
Exan	nple 2	BSF	INDF, 3						
		F C After Instr V F	V = 0x17 SR = 0xC2 Contents of Ac						

BTFSC	В	it Test, S	kip if C	lear		
Syntax:	[<i>label</i>] BT	FSC f,b				
Operands:	$0 \le f \le 127$					
	$0 \le b \le 7$					
Operation:	skip if (f <b:< td=""><td colspan="5">skip if $(f < b >) = 0$</td></b:<>	skip if $(f < b >) = 0$				
Status Affected:	None					
Encoding:	01	10bb	bfff	ffff		
Description:	If bit 'b' is '0'	If bit 'b' in register 'f' is '0' then the next instruction is skipped. If bit 'b' is '0' then the next instruction (fetched during the current instruction execu- tion) is discarded, and a NOP is executed instead, making this a 2 cycle instruction.				
Words:	1					
Cycles:	1(2)					
Q Cycle Activity:						
Q1	Q2	Q3	Q4	ŀ		
Decode	Read register 'f'	Proces data	-	No peration		
If skip (2nd cycle)			0	peration		
Q1	Q2	Q3	Q4	Ļ		
No	No	No		No		
operation	operation	operatio	on o	peration		
Example 1			FLAG, 4 PROCESS			
Case 1:	Po Fl After Instru Si	Before Instruction PC = addressHERE FLAG= xxx0 xxxx After Instruction Since FLAG<4>= 0, PC = addressTRUE				
Case 2:	Before Inst P(Fl After Instru Si	ruction C = ad LAG= xx Iction	ldresshe	RE X		

Syntax:	[<i>label</i>] BT	- FSS fb				
Operands:	$\begin{bmatrix} aber \end{bmatrix} B \\ 0 \le f \le 127$. J.J. 1,D				
Operands.	0≤1≤127 0≤b<7					
Operation:	skip if (f) = 1					
Status Affected:	None	None				
Encoding:	01	01 11bb bfff ffff				
Description:	If bit 'b' is '1 tion execut	If bit 'b' in register 'f' is '1' then the next instruction is skipped. If bit 'b' is '1', then the next instruction (fetched during the current instruc- tion execution) is discarded and a NOP is executed instead, making this a 2 cycle instruction.				
Words:	1					
Cycles:	1(2)					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process data	No operation			
If skip (2nd cycle):					
Q1	Q2	Q3	Q4			
No operation	No operation	No operation	No operation			
Example 1		BTFSS FLAG GOTO PROC •	;, 4 ESS_CODE			
0 1	Before Instruction PC = addressHERE FLAG= xxx0 xxxx After Instruction Since FLAG<4>= 0, PC = addressFALSE					
Case 1:	After Instru Si	ction nce FLAG<4>=	= 0,			

CALL	C	Call Subrout	tine	
Syntax:	[label] (CALL k		
Operands:	$0 \le k \le 20$	47		
Operation:	$(PC)+1 \rightarrow k \rightarrow PC < 1$ (PCLATH < 1)		<12:11>	
Status Affected:	None			
Encoding:	10	0kkk kk	kk kkkk]
Description:	stack. The	eleven bit in of the PC a	nmediate add	urn address (PC+1) is pushed onto the dress is loaded into PC bits <10:0>. The m PCLATH<4:3>. CALL is a two cycle
Words:	1			
Cycles:	2			
Q Cycle Activity:				
1st cycle:				
Q1	Q2	Q3	Q4	_
Decode	Read literal 'k'	Process data	No operation	
2nd cycle:				_
Q1	Q2	Q3	Q4	_
No operation	No operation	No operation	No operation	
Example 1	HERE Before Ins	CALL THE	RE	
	F After Instr	PC = Addres		

TOS = Address HERE+1 PC = Address THERE

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \le f \le 127$
Operation:	$\begin{array}{l} 00h \rightarrow f \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Encoding:	00 0001 1fff ffff
Description:	The contents of register 'f' are cleared and the Z bit is set.
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1	Q2 Q3 Q4
Decode	Read Process Write register 'f' data register 'f'
Example 1	CLRF FLAG_REG Before Instruction FLAG_REG=0x5A After Instruction FLAG_REG=0x00 Z = 1
Example 2	CLRF INDF Before Instruction FSR = $0xC2$ Contents of Address (FSR)= $0xAA$ After Instruction FSR = $0xC2$ Contents of Address (FSR)= $0x00$ Z = 1

CLRW		Clear W	,	
Syntax:	[label]	CLRW		
Operands:	None			
Operation:	$\begin{array}{c} 00h \rightarrow W \\ 1 \rightarrow Z \end{array}$			
Status Affected:	Z			
Encoding:	00	0001	0xxx	xxxx
Description:	W registe	r is clea	red. Zei	o bit (Z) is
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	G	24
Decode	Read register 'f'	Proce dat		Write egister 'W'
				-
Example 1	CLRW			

Before Instruction W = 0x5AAfter Instruction W = 0x00Z = 1

CLRWD	Clear Watchdog Timer				
Syntax:	[label] CLRWDT				
Operands:	None				
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \mbox{ prescaler count,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$				
Status Affected:	TO, PD				
Encoding:	00 0000 0110 0100				
Description:	CLRWDT instruction clears the Watchdog Timer. It also clears the pres caler count of the WDT. Status bits TO and PD are set.				
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2 Q3 Q4				
Decode	No Process Clear operation data WDT Counter Counter				
Example 1	CLRWDT				
	Before Instruction WDT counter= x WDT prescaler =1:128 After Instruction WDT counter=0x00				
	WDT prescaler count=0 $\overline{TO} = 1$ $\overline{PD} = 1$ WDT prescaler =1:128				

Note: The CLRWDT instruction does not affect the assignment of the WDT prescaler.

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(\bar{f}) \rightarrow destination$
Status Affected:	Z
Encoding:	00 1001 dfff ffff
Description:	The contents of register 'f' are 1's complemented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1	Q2 Q3 Q4
Decode	Read Process Write to register 'f' data destination
Example 1	COMF REG1, 0
	Before Instruction
	REG1= 0x13 After Instruction
	REG1= 0x13
	W = 0xEC
Example 2	COMF INDF, 1
	Before Instruction
	FSR = 0xC2
	Contents of Address (FSR)=0xAA After Instruction
	FSR = 0xC2
	Contents of Address (FSR)=0x55
Example 3	COMF REG1, 1
-	Before Instruction
	REG1= 0xFF
	After Instruction
	REG1= 0x00

DECF	Decrement f				
Syntax:	[<i>label</i>] DECF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(f) - 1 \rightarrow destination				
Status Affected:	Z				
Encoding:	00 0011 dfff ffff				
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2 Q3 Q4				
Decode	Read Process Write to register 'f' data destination				
Example 2	CNT = 0x01 $Z = 0$ After Instruction $CNT = 0x00$ $Z = 1$ DECF INDF, 1 Before Instruction $FSR = 0xC2$ Contents of Address (FSR) = 0x01 $Z = 0$ After Instruction $FSR = 0xC2$ Contents of Address (FSR) = 0x00 $Z = 1$				
Example 3	DECF CNT, 0 Before Instruction CNT = 0x10 $W = x$ $Z = 0$ After Instruction CNT = 0x10 $W = 0x0F$ $Z = 0$				

DECFSZ	-	Decremen	nt f, Skip if 0		
Syntax:	[label]	DECFSZ	f,d		
Operands:	$0 \le f \le 1$	127			
	d ∈ [0,1]			
Operation:	(f) - 1 —	(f) - 1 \rightarrow destination; skip if result = 0			
Status Affected:	None	None			
Encoding:	0 0	1011	dfff ffff		
Description:	in the W If the re instructi	/ register. If 'o	ster 'f' are de d' is 1 the res n the next ins n) is discarde struction.		
Words:	1				
Cycles:	1(2)				
Q Cycle Activity:					
Q1	Q2	Q3	Q4		
Decode	Read	Process	Write to		
	register 'f'	data	destination		
If skip (2nd cycle Q1	e): Q2	Q3	Q4		
No	No	No	No		
operation	operation	operation	operation		
Example	HERE CONTINU	DECFSZ GOTO E • •	CNT, 1 LOOP		
Case 1: Case 2:	After Instr CNT PC	= address = = 0x01 uction = 0x00 = address =	HERE CONTINUE		
Case 2:	CNT After Instru CNT	= address = 0x02			

$0 \le k \le 2047$ $x \to PC<10$ PCLATH<4: None 10 10 10 10 10 10 10 10 10 10	:0> :3> \rightarrow PC< Lkkk kkl	kk kkkk al branch. Th e upper bits
$x \rightarrow PC < 10$ PCLATH < 4: None 10 1 COTO is an u nto PC bits COTO is a two	$\begin{array}{c} :0>\\ :3> \rightarrow PC<\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	kk kkkk al branch. Th e upper bits
PCLATH<4: None 10 1 COTO is an unto PC bits COTO is a two	$3 \rightarrow PC <$ 1 kkk kkl uncondition <10:0>. Th	kk kkkk al branch. Th e upper bits
10 1 COTO is an unto PC bits	uncondition <10:0>. Th	al branch. The upper bits
COTO is an unto PC bits	uncondition <10:0>. Th	al branch. The upper bits
nto PC bits CTO is a tw	<10:0>. Th	e upper bits
2		
2 (23	Q4
ead literal k'<7:0>	Process data	No operation
2 (23	Q4
No peration	No operation	No operation
	ad literal <7:0>	<7:0> data Q3 No No eration operation

After Instruction PC =AddressTHERE

	Increment f
Syntax:	[<i>label</i>] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(f) + 1 \rightarrow destination
Status Affected:	Z
Encoding:	00 1010 dfff ffff
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1	Q2 Q3 Q4
Decode	Read Process Write to register 'f' data destination
	Before Instruction CNT = 0xFF Z = 0 After Instruction
	After Instruction CNT = 0x00 Z = 1
Example 2	INCF INDF, 1
	Before Instruction FSR = 0xC2 Contents of Address (FSR) = 0xFF Z = 0
	After Instruction FSR = 0xC2 Contents of Address (FSR) = 0x00 Z = 1
Example 3	INCF CNT, 0
	Before Instruction CNT = 0x10 W = x Z = 0 After Instruction
	After instruction CNT = 0x10 W = 0x11

INCFSZ		ncrement f,	•			
Syntax:		INCFSZ f,d				
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]	$0 \le f \le 127$ d \equiv [0.1]				
Operation:	$(f) + 1 \rightarrow 0$	(f) + 1 \rightarrow destination, skip if result = 0				
Status Affected:	None	None				
Encoding:	0.0	00 1111 dfff ffff				
Description:	the W reg If the resu instructior	ister. If 'd' is ' It is 0, then t	1 the result is he next instru s discarded a	mented. If 'd' is 0 the result is placed ir placed back in register 'f'. uction (fetched during the current and a NOP is executed instead, making		
Words:	1					
Cycles:	1(2)					
Q Cycle Activity	:					
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process data	Write to destination			
If skip (2nd cycle	e):					
Q1	Q2	Q3	Q4	1		
No operation	No operation	No operation	No operation			
Example	HERE CONTINU	INCFSZ GOTO E • •	CNT, 1 LOOP			
Case 1:	Before Instruction PC = address HERE CNT = 0xFF After Instruction CNT = 0x00 PC = address CONTINUE					
Case 2:	CNT After Instr CNT	= address = 0x00				

IORLW	Inclusive OR Literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \le k \le 255$
Operation:	(W).OR. $k \rightarrow W$
Status Affected:	Z
Encoding:	11 1000 kkkk kkkk
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result placed in the W register.
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1	Q2 Q3 Q4
Decode	ReadProcessWrite to Wliteral 'k'dataregister
Example 1	IORLW 0x35
	Before Instruction W = 0x9A
	After Instruction
	W = 0xBF
	Z = 0
Example 2	IORLW MYREG
	Before Instruction
	W = 0x9A
	Address of MYREG [†] = 0x37 † MYREG is a symbol for a data memory location
	After Instruction
	W = 0x9F Z = 0
	Z = 0
Example 3	IORLW HIGH (LU_TABLE)
	Before Instruction
	W = 0x9A
	Address of LU_TABLE [†] = 0x9375 † LU_TABLE is a label for an address in program memory
	After Instruction
	W = 0x9B
	Z = 0
Example 4	IORLW 0x00
Example 4	
Example 4	Before Instruction W = 0x00
Example 4	Before Instruction

IORWF	Inclusive OR W with f						
Syntax:	[<i>label</i>] IORWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$						
Operation:	(W).OR. (f) \rightarrow destination						
Status Affected:	Z						
Encoding:	00 0100 dfff ffff						
Description:	Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed the W register. If 'd' is 1 the result is placed back in register 'f'.						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2 Q3 Q4						
Decode	Read Process Write to register 'f' data destination						
Example 1	IORWF RESULT, 0 Before Instruction RESULT=0x13						
	W = 0x91 After Instruction $RESULT=0x13$ $W = 0x93$ $Z = 0$						
Example 2	IORWF INDF, 1						
	Before Instruction						
	W = 0x17 FSR = 0xC2						
	FSR = 0xC2 Contents of Address (FSR) = 0x30						
	After Instruction W = 0x17						
	FSR = 0xC2						
	Contents of Address (FSR) = $0x37$ Z = 0						
	2 - 0						
Example 3	IORWF RESULT, 1						
Case 1:	Before Instruction RESULT=0x13						
	W = 0x91 After Instruction						
	RESULT=0x93						
	W = 0x91 Z = 0						
Case 2:	Before Instruction RESULT= $0x00$ W = $0x00$						
	After Instruction						
	$\begin{array}{rcl} RESULT=0 \times 00 \\ W &= & 0 \times 00 \end{array}$						
	Z = 1						

MOVLW		Move Lite	ral to	N					
Syntax:	[label]	MOVLW	k						
Operands:	$0 \le k \le 25$	55							
Operation:	$k \to W$								
Status Affected:	None								
Encoding:	11	00xx	kkkk	kkkk					
Description:	The eight t	oit literal 'k' i	s loade	d into W re	gister. The don't cares will assemble as 0's				
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3	Q4	ŀ	_				
Decode	Read literal 'k'	Process data		rite to W egister					
					1				
Example 1	MOVLW	0x5A							
	After Instruction								
	N N	W = 0	k5A						
Example 2	MOVLW MYREG								
	Before Instruction								
	W = 0x10 Address of MYREG [†] = 0x37								
	† MYREG is a symbol for a data memory location								
	After Instruction								
		W = 0x3	57						
Example 3	MOVLW	UTCU (II	ים גידי ז	छ)					
Example 5									
	Before Instruction W = 0x10								
		Address of :		SLE $\dagger = 0 \times$	9375				
	-	t lu_tabli			address in program memory				
	After Insti	ruction W = 0x9	13						
		0.3							

MOVF	Move f						
Syntax:	[<i>label</i>] MOVF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$						
Operation:	$(f) \rightarrow destination$						
Status Affected:	Z						
Encoding:	00 1000 dfff ffff						
Description:	The contents of register 'f' is moved to a destination dependent upon the status of 'd'. If 'd' = 0, destination is W register. If 'd' = 1, the destination is file register 'f' itself. 'd' = 1 is useful to test a file register since status flag \overline{z} is affected.						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2 Q3 Q4						
Decode	Read Process Write to register 'f' data destination						
Example 2	After Instruction W = 0xC2 Z = 0 MOVF INDF, 0 Before Instruction W = 0x17 FSR = 0xC2 Contents of Address (FSR) = 0x00 After Instruction W = 0x17 FSR = 0xC2 Contents of Address (FSR) = 0x00 Z = 1						
Example 3	MOVF FSR, 1						
Case 1:	Before Instruction FSR = 0x43 After Instruction FSR = 0x43 Z = 0						
Case 2:	Before Instruction FSR = 0x00 After Instruction FSR = 0x00 Z = 1						

MOVWF	Γ	Nove W to	f	
Syntax:	[label]	MOVWF	f	
Operands:	$0 \le f \le 127$	7		
Operation:	$(W) \to f$			
Status Affected:	None			
Encoding:	00	0000 1	fff	ffff
Description:	Move data	from W regis	ster to	register 'f'
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	Q4	
Decode	Read register 'f'	Process data		Write gister 'f'
Example 1 Example 2	۷ After Instr C	$V = 0x^{4}$	G=0xF 4F G=0x4	
⊏xampie ∠	Before Ins V F C After Instr V F	struction V = 0x17 SR = 0xC Contents of A	2 Address , 2	

NOP		No Opera	ation	
Syntax:	[label]	NOP		
Operands:	None			
Operation:	No opera	ation		
Status Affected	l: None			
Encoding:	00	0000	0xx0	0000
Description:	No opera	ation.		·
Words:	1			
Cycles:	1			
Q Cycle Activit	y:			
Q1	Q2	Q3		Q4
Decode	No operation	No operati	on	No operation
Example	HERE	NOP		

Before Instruction PC = address HERE After Instruction PC = address HERE + 1

29

:

OPTION	Load Option Register
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \to OPTION$
Status Affected:	None
Encoding:	00 0000 0110 0010
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code compatibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it.
Words:	1
Cycles:	1
	1

To maintain upward compatibility with future PIC16CXX products, do not use this instruction.

RETFIE	I	Return from Interrupt					
Syntax:	[label]	RETFIE					
Operands:	None						
Operation:	$\begin{array}{l} TOS \to P \\ 1 \to GIE \end{array}$	C,					
Status Affected:	None						
Encoding:	00	0000 00	00 1001				
Description:	loaded in	the PC. The	Global Interr	ddress at the Top of Stack (TOS) is rupt Enable bit, GIE (INTCON<7>), is ots. This is a two cycle instruction.			
Words:	1						
Cycles:	2						
Q Cycle Activity:							
1st cycle:							
Q1	Q2	Q3	Q4				
Decode	No operation	Process data	No operation				
2nd cycle:		-		_			
Q1	Q2	Q3	Q4				
No operation	No operation	No operation	No operation				
Example	RETFIE	uction					

PC = TOSGIE = 1

29

Instruction Set

RETLW					
Syntax:		RETLW	k		
Operands:	$0 \le k \le 25$	5			
Operation:	$k \rightarrow W;$ TOS $\rightarrow P$	С			
Status Affected:	None				
Encoding:	11	01xx	kkkl	k kkkk	
Description:		-bit addr	ress a		ght bit literal 'k'. The program counter is Stack (the return address). This is a
Words:	1				
Cycles:	2				
Q Cycle Activity: 1st cycle:					
Q1	Q2	Q3		Q4	
Decode	Read literal 'k'	Proce data		Write to W register	
2nd cycle:					
Q1	Q2	Q3		Q4	1
No operation	No operation	No operat		No operation	
Example	HERE (CALL TA	BLE	; offset	ains table value nas table value
	1	ADDWF PORETLW k:	1	;W = offs ;Begin ta ;	
	1	RETLW ki	n	; End of	table
	Before Ins				
	After Instr		x07 alue of	k8	
		• •		= Address H	ere + 1

RETUR	N	Return from Subroutine						
Syntax:	[label] RETURN						
Operands:	None							
Operation:	TOS –	→ PC						
Status Affected:	None							
Encoding:	0.0	0000	0000 1000					
Description:				ck is POPed and the top of the stack n counter. This is a two cycle instruc-				
Words:	1							
Cycles:	2							
Q Cycle Activity:								
1st cycle:								
Q1	Q2	Q3	Q4	_				
Decode	No operation	Process data	No operation					
2nd cycle:				-				
Q1	Q2	Q3	Q4	_				
No operation	No operation	No operation	No operation					
				-				

Example

HERE RETURN

After Instruction PC = TOS

29

© 1997 Microchip Technology Inc.

RLF	Rotate Left f through Carry								
Syntax:	[<i>label</i>] RLF f,d								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$								
Operation:	See description below								
Status Affected:	С								
Encoding:	00 1101 dfff ffff								
Description:	The contents of register 'f' are rotated one bit to the left through the Carr Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.								
	C Register f								
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2 Q3 Q4								
Decode	Read Process Write to register 'f' data destination								
	REG1=1110 0110 W =1100 1100 C =1								
Example 2	RLF INDF, 1								
Case 1:	Before Instruction W = xxxx xxxx FSR = 0xC2 Contents of Address (FSR) = 0011 1010 C = 1								
	After Instruction W = 0x17 FSR = 0xC2 Contents of Address (FSR) = 0111 0101 C = 0								
Case 2:	Before Instruction W = xxxx xxxx FSR = 0xC2 Contents of Address (FSR) = 1011 1001 C = 0								
	After Instruction W = 0x17 FSR = 0xC2 Contents of Address (FSR) = 0111 0010 C = 1								

RRF	Rotate Right f through Carry					
Syntax:	[<i>label</i>] RRF f,d					
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]					
Operation:	See description below					
Status Affected:	С					
Encoding:	00 1100 dfff ffff					
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.					
	C Register f					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2 Q3 Q4					
Decode	Read Process Write to register 'f' data destination					
Example 1	$ \begin{array}{rcl} RRF & REGI, 0 \\ \hline \mbox{Before Instruction} \\ REG1 = & 1110 & 0110 \\ W & = & xxxx & xxxx \\ C & = & 0 \\ \hline \mbox{After Instruction} \\ REG1 = & 1110 & 0110 \\ W & = & 0111 & 0011 \\ C & = & 0 \\ \hline \mbox{C} & = & 0 \\ \hline \end{array} $					
Example 2	RRF INDF, 1					
Case 1:	Before Instruction W = xxxx xxxx FSR = 0xC2 Contents of Address (FSR) = 0011 1010 C = 1 After Instruction W = 0x17 FSR = 0xC2 Contents of Address (FSR) = 1001 1101					
	C = 0					

Instruction Set

SLEEP				
Syntax:	[label]	SLEEP		
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow W \\ 0 \rightarrow WDT \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$	DT, ſ prescaler c	ount,	
Status Affected:	TO, PD			
Encoding:	00	0000 01	10 0011	
Description:	Watchdog	g Timer and i	ts prescaler c	eared. Time-out status bit, TO is set. count are cleared. ode with the oscillator stopped.
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	Q4	
Decode	No operation	No operation	Go to sleep	
Example:		SLEEP		

Note: The SLEEP instruction does not affect the assignment of the WDT prescaler

Op

SUBLW	
Syntax:	[label] SUBLW k
Operands:	$0 \le k \le 255$
Operation:	$k - (W) \to W$
Status Affected:	
Encoding:	11 110x kkkk kkkk
Description:	The W register is subtracted (2's complement method) from the eight the literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1 Decode	Q2 Q3 Q4 Read Process Write to W
Decode	literal 'k' data register
Example 1:	SUBLW 0x02
Case 1:	Before Instruction
	W = 0x01
	C = x Z = x
	After Instruction
	W = 0x01
	C = 1; result is positive
	Z = 0
Case 2:	Before Instruction
	W = 0x02 C = x
	Z = x
	After Instruction
	W = 0x00
	C = 1 ; result is zero Z = 1
Case 3:	Before Instruction
	W = 0x03
	C = x
	Z = x After Instruction
	W = 0 x FF
	C = 0 ; result is negative
	Z = 0
Example 2	SUBLW MYREG
	Before Instruction
	W = 0x10
	Address of MYREG [†] = 0x37 † MYREG is a symbol for a data memory location
	After Instruction

Instruction Set

SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(f) - (W) \rightarrow destination
Status Affected:	C, DC, Z
Encoding:	00 0010 dfff ffff
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1	Q2 Q3 Q4
Decode	Read Process Write to register 'f' data destination
Case 2:	$\begin{array}{rcl} REG1=1 & & \\ W &=& 2 & \\ C &=& 1 & \\ Z &=& 0 & \end{array} ; \text{ result is positive} \\ \\ \\ \end{tabular}$
	Z = x
	After Instruction REG1= 0 W = 2 C = 1 ; result is zero Z = 1
Case 3:	Before Instruction
	REG1= 1 $W = 2$ $C = x$ $Z = x$
	After Instruction
	REG1= 0xFF $W = 2$ $C = 0$; result is negative $Z = 0$

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(f<3:0>) \rightarrow destination<7:4>,$ $(f<7:4>) \rightarrow destination<3:0>$
Status Affected:	None
Encoding:	00 1110 dfff ffff
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1	Q2 Q3 Q4
Decode	ReadProcessWrite toregister 'f'datadestination
Example 1	SWAPF REG, 0
	Before Instruction
	REG1= 0xA5
	After Instruction
	REG1= 0xA5 $W = 0x5A$
Example 2	SWAPF INDF, 1
	Before Instruction W = 0x17 FSR = 0xC2 Contents of Address (FSR) = 0x20 After Instruction W = 0x17 FSR = 0xC2 Contents of Address (FSR) = 0x02
Example 3	SWAPF REG, 1
	Before Instruction
	REG1= 0xA5
	After Instruction
	REG1= 0x5A

TRIS	Load TRIS Register
Syntax:	[label] TRIS f
Operands:	$5 \le f \le 7$
Operation:	(W) \rightarrow TRIS register f;
Status Affected:	None
Encoding:	00 0000 0110 0fff
Description:	The instruction is supported for code compatibility with the PIC16C5X prod- ucts. Since TRIS registers are readable and writable, the user can directly address them.
Words:	1
Cycles:	1

Example

To maintain upward compatibility with future PIC16CXX products, do not use this instruction.

$0 \le k \le 25$ (W).XOR. Z Il The conteresult is p 1	55 . $k \rightarrow W$ 1010 kkl	register ar					
(W).XOR. Z The conteresult is p 1	$k \rightarrow W$ 1010 kk ents of the W	register ar					
Z The conteresult is p 1	1010 kkl	register ar					
11The conteresult is p1	ents of the W	register ar					
The conteresult is p	ents of the W	register ar					
result is p 1							
		W register.		he eight bit literal 'k'. Th			
1							
22	Q3	Q4					
Read literal 'k'	Process data	Write to W register	, 				
XORLW	0xAF		; 1010 1111	(OxAF)			
Before Instruction			; 1011 0101	(0xB5)			
	W = 0xB	5	;				
After Instr	ruction		; 0001 1010	(0x1A)			
	W = 0x1 $Z = 0$	A					
XORLW	MYREG						
		mbol for a d	ata memory location	on			
Z	= 0						
XORLW	HIGH (LU_T	'ABLE)					
Before Instruction							
W = 0xAF							
After Instruction							
	1 Read literal 'k' XORLW Before Inst After Instru- W After Instru- W Z XORLW Before Ins W After Instru- W After Instru- M After Instru- M After Instru-	1 2 Q3 Read Process data XORLW 0xAF Before Instruction W = 0xB After Instruction W = 0x1 Z = 0 XORLW MYREG Before Instruction W = 0xAF Address of MYR \dagger MYREG is a sy After Instruction W = 0x18 Z = 0 XORLW HIGH (LU_T Before Instruction W = 0xAF Address of LU_ \dagger LU_TABLE is After Instruction	1 2 Q3 Q4 Read Process Write to W literal 'k' data register XORLW 0xAF Before Instruction W = 0xB5 After Instruction W = 0x1A Z = 0 XORLW MYREG Before Instruction W = 0xAF Address of MYREG [†] = 0x35 [†] MYREG is a symbol for a d After Instruction W = 0x18 Z = 0 XORLW HIGH (LU_TABLE) Before Instruction W = 0xAF Address of LU_TABLE [†] = 1 [†] LU_TABLE is a label for a After Instruction W = 0xAF Address of LU_TABLE [†] = 1 [†] LU_TABLE is a label for a After Instruction W = 0x3C	1 22 Q3 Q4 Read Process Write to W literal 'k' data register XORLW 0xAF ; 1010 1111 Before Instruction ; 1011 0101 W = 0xB5 ; After Instruction ; 0001 1010 W = 0x1A Z = 0 XORLW MYREG Before Instruction W = 0xAF Address of MYREG [†] = 0x37 [†] MYREG is a symbol for a data memory location After Instruction W = 0x18 Z = 0 XORLW HIGH (LU_TABLE) Before Instruction W = 0xAF Address of LU_TABLE [†] = 0x9375 [†] LU_TABLE is a label for an address in prograve After Instruction W = 0xAF Address of LU_TABLE [†] = 0x9375 [†] LU_TABLE is a label for an address in prograve After Instruction W = 0xAF			

XORWF		Exclusive O	R W with f				
Syntax:	[label])	XORWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	7					
Operation:	(W).XOR.	(f) \rightarrow destination	ation				
Status Affected:	Z						
Encoding:	00	0110 df:	ff ffff				
Description:							gister 'f'. If 'd' is 0 the is stored back in regis
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4	-			
Decode	Read register 'f'	Process data	Write to destination				
Example 1	XORWF	REG, 1		; 1	010	1111	(0xAF)
·	Before Ins	struction		; 1	011	0101	(0xB5)
		REG= 0xAF	.	; -			
		W = 0xB5	i	; 0	001	1010	(0x1A)
	After Instr	ruction					
		REG= 0x1A W = 0xB5					
Example 2	XORWF	REG, O		; 1	010	1111	(0xAF)
	Before Ins	struction		; 1	011	0101	(0xB5)
		REG= 0xAF					
		W = 0xB5)	; 0	001	1010	(0x1A)
	After Instr						
		REG= 0xAF W = 0x1A					
Example 3	XORWF	INDF, 1					
	F	struction N = 0xB5 FSR = 0xC2 Contents of Add	dress (FSR) =	= 0xAF	=		
	After Instr			0,0,1			

29.6 Design Tips

Question 1: How can I modify the value of W directly? I want to decrement W.

Answer 1:

There are a few possibilities, two are:

- 1. For the midrange devices, there are several instructions that work with a literal and W. For instance, if it were desired to decrement W, this can be done with an ADDLW OXFE (the 0x prefix denotes hex to the assembler)
- 2. Notice that all of the instructions can modify a value right where it sits in the file register. This means you can decrement it right where it is. You do not even need to move it to W. If you want to decrement it AND move it somewhere else, then you make W the DESTI-NATION of the decrement (DECF register,W) then put it where you want it. It is the same number of instructions as a straight move, but it gets decremented along the way.

Question 2: Is there any danger in using the TRIS instruction for the PIC16CXXX since there is a warning in the Data book suggesting it not be used?

Answer 2:

For code compatibility and upgrades to later parts, the use of the TRIS instruction is not recommended. You should note the TRIS instruction is limited to ports A, B and C. Future devices may not support these instructions.

Question 3: Do I have to switch to Bank1 of data memory before using the TRIS instruction (for parts with TRIS registers in the memory map)?

Answer 3:

No. The $\ensuremath{\mathtt{TRIS}}$ instruction is Bank independent. Again the use of the $\ensuremath{\mathtt{TRIS}}$ instruction is not recommended.

Question 4: I have seen references to "Read-Modify-Write" instructions in your data sheet, but I do not know what that is. Can you explain what it is and why I need to know this?

Answer 4:

An easy example of a Read-Modify-Write (R-M-W) instruction is the bit clear instruction BCF. You might think that the processor just clears the bit, which on a port output pin would clear the pin. What actually happens is the whole port (or register) is first read, THEN the bit is cleared, then the new modified value is written back to the port (or register). Actually, any instruction that depends on a value currently in the register is going to be a Read-Modify-Write instruction. This includes ADDWF, SUBWF, BCF, BSF, INCF, XORWF, etc... Instructions that do not depend on the current register value, like MOVWF, CLRF, and so on are not R-M-W instructions.

One situation where you would want to consider the affects of a R-M-W instruction is a port that is continuously changed from input to output and back. For example, say you have TRISB set to all outputs, and write all ones to the PORTB register, all of the PORTB pins will go high. Now, say you turn pin RB3 into an input, which happens to go low. A BCF PORTB, 6 is then executed to drive pin RB6 low. If you then turn RB3 back into an output, it will now drive low, even though the last value you put there was a one. What happened was that the BCF of the other pin (RB6) caused the whole port to be read, including the zero on RB3 when it was an input. Then, bit 6 was changed as requested, but since RB3 was read as a zero, zero will also be placed back into an output, the new value was reflected.

nstruction

Question 5: When I perform a BCF other pins get cleared in the port. Why?

Answer 5:

There are a few possibilities, two are:

- 1. Another case where a R-M-W instruction may seem to change other pin values unexpectedly can be illustrated as follows: Suppose you make PORTC all outputs and drive the pins low. On each of the port pins is an LED connected to ground, such that a high output lights it. Across each LED is a 100 μF capacitor. Let's also suppose that the processor is running very fast, say 20 MHz. Now if you go down the port setting each pin in order; BSF PORTC, 0 then BSF PORTC, 1 then BSF PORTC, 2 and so on, you may see that only the last pin was set, and only the last LED actually turns on. This is because the capacitors take a while to charge. As each pin was set, the pin before it was not charged yet and so was read as a zero. This zero is written back out to the port latch (R-M-W, remember) which clears the bit you just tried to set the instruction before. This is usually only a concern at high speeds and for successive port operations, but it can happen so take it into consideration.
- 2. If this is on a PIC16C7X device, you may not have configured the I/O pins properly in the ADCON1 register. If a pin is configured for analog input, any read of that pin will read a zero, regardless of the voltage on the pin. This is an exception to the normal rule that the pin state is always read. You can still configure an analog pin as an output in the TRIS register, and drive the pin high or low by writing to it, but you will always read a zero. Therefore if you execute a Read-Modify-Write instruction (see previous question) all analog pins are read as zero, and those not directly modified by the instruction will be written back to the port latch as zero. A pin configured as analog is expected to have values that may be neither high nor low to a digital pin, or floating. Floating inputs on digital pins are a no-no, and can lead to high current draw in the input buffer, so the input buffer is disabled.

29.7 Related Application Notes

This section lists application notes that are related to this section of the manual. These application notes may not be written specifically for the Mid-Range MCU family (that is they may be written for the Base-Line, or High-End families), but the concepts are pertinent, and could be used (with modification and possible limitations). The current application notes related to the instruction set are:

Currently No related Application Notes

29

29.8 Revision History

Revision A

This is the initial released revision of the Instruction Set description.